LAIA's Rooftop Garden Robotics Communication

Lab for Artificial Intelligence and its Applications (L.A.I.A.)
Coppin State University
PI: Leshell Hatley, PhD

Collaborative Research & Development Project

The Lab for Artificial Intelligence and its Applications
(LAIA) @ Coppin State University

&

The Juxtopia Group

Outline: Rooftop Garden Robotics

The Issue: Food Deserts Shamsuddin Khan

Our Solution: Shamsuddin Khan

Robot, Drone, App: Gabriel Franca

Design Challenges: Jerry Mahammitt

Design Solutions: Jerry Mahammitt

White House HBCU Maker & Innovation Challenge: Dr. Leshell Hatley

Demonstration and Q & A: All

Rooftop Garden Robotics

Issue: Food Deserts

- Almost every big city has food desert(s).
- Locations with limited access to healthy affordable food.
- A city usually doesn't have enough vacant space for gardening.

Rooftop Garden Robotics

BALTIMORE DEMOGRAPHICS AS OF 2012

Source: 2010 Census Data and the Department of Planning

1 in 5 Baltimore City residents live in food deserts, or 125,000 people

Nearly 1 in 4 of Baltimore's school aged children (0-17) live in a food desert, or 31,000 children

1 in 4 of Baltimore's African American population lives in a food desert.

1 in 4 households, or 13,000 households receive Supplemental Nutrition Assistance Program (SNAP) benefits, twice the percentage of non-food desert households.

1 in 3 of Baltimore's neighborhoods, or 36 percent, are located within a food desert.

Our Solution: Rooftop Garden Robotics

Rooftop Garden Robotics:

- It's a Garden on the Roof
 Rooftops are nice choices for fruits and vegetables.
- Robots take care of the garden completely (Artificial Intelligence).
- Drones carry the food from the roof to the ground.

Addresses the lack of space for gardens in cities.

Also suitable for the elderly and the disabled.

Design of the Robots

- Robots will have sensors to determine different factors.
- Red sensor to detect ripen tomatoes.
- Green sensor to detect green vegetables.
- Humidity sensor to decide whether it's necessary to water.

The design of our drone

- Design a different drone
- The job of our drone
- The drone has to support large weight

Communication Between All

- Development of mobile and web app
 - Enable communication between all

The Challenge

- Sensors blinded by obstructions (i.e. bird poop, dirt, wind).
- Robots knowing when to take shelter in rough weather.
- Drainage system for the rain water.
- Protection from Animals (squirrels, birds etc...)

DESIGNATION OF THE CHALLENGE

Design of the Garden

- Shelter from animals and weather
- Pathways to allow for the robot movement

WHITE HOUSE HBCU/TCU Maker & Innovation Challenge, June 2016



Video

https://www.youtube.com/watch?v=4UGpREMkJfg

Demonstration

Thank You!

Questions?

Contact:

http://www.laia-csu.org

@laia_csu

